skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meluso, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many models of learning in teams assume that team members can share solutions or learn concurrently. However, these assumptions break down in multidisciplinary teams where team members often complete distinct, interrelated pieces of larger tasks. Such contexts make it difficult for individuals to separate the performance effects of their own actions from the actions of interacting neighbors. In this work, we show that individuals can overcome this challenge by learning from network neighbors through mediating artifacts (like collective performance assessments). When neighbors’ actions influence collective outcomes, teams with different networks perform relatively similarly to one another. However, varying a team’s network can affect performance on tasks that weight individuals’ contributions by network properties. Consequently, when individuals innovate (through “exploring” searches), dense networks hurt performance slightly by increasing uncertainty. In contrast, dense networks moderately help performance when individuals refine their work (through “exploiting” searches) by efficiently finding local optima. We also find that decentralization improves team performance across a battery of 34 tasks. Our results offer design principles for multidisciplinary teams within which other forms of learning prove more difficult. 
    more » « less